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Abstract
Selection of an appropriate model for respiration (R) is important for accurate gap-filling of CO2 flux data, and for partitioning

measurements of net ecosystem exchange (NEE) to respiration and gross ecosystem exchange (GEE). Using cross-validation

methods and a version of Akaike’s Information Criterion (AIC), we evaluate a wide range of simple respiration models with the

objective of quantifying the implications of selecting a particular model. We fit the models to eddy covariance measurements of

whole-ecosystem respiration (Reco) from three different ecosystem types (a coniferous forest, a deciduous forest, and a grassland),

as well as soil respiration data from one of these sites. The well-known Q10 model, whether driven by air or soil temperature,

performed poorly compared to other models, as did the Lloyd and Taylor model when used with two of the parameters constrained

to previously published values and only the scale parameter being fit. The continued use of these models is discouraged. However, a

variant of the Q10 model, in which the temperature sensitivity of respiration varied seasonally, performed reasonably well, as did the

unconstrained three-parameter Lloyd and Taylor model. Highly parameterized neural network models, using additional covariates,

generally provided the best fits to the data, but appeared not to perform well when making predictions outside the domain used for

parameterization, and should thus be avoided when large gaps must be filled. For each data set, the annual sum of modeled

respiration (annual SR) was positively correlated with model goodness-of-fit, implying that poor model selection may inject a

systematic bias into gap-filled estimates of annual SR.
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1. Introduction

Models are used in conjunction with measurements

of surface-atmosphere CO2 fluxes ðFCO2
Þ for a variety

of reasons. These include: (1) filling gaps in the eddy
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covariance flux record (Falge et al., 2001); (2)

estimating annual sums of the components of the net

flux, such as total ecosystem respiration (Reco) or gross

ecosystem exchange (GEE) (Reichstein et al., 2005;

Richardson and Hollinger, 2005; Hagen et al., 2006);

(3) extracting physiological parameters from the flux

data (Van Wijk and Bouten, 2002; Braswell et al., 2005;

Hollinger and Richardson, 2005). Typically, these

models are relatively simple functions of only a few

independent variables and several parameters. Here we

evaluate a range of simple respiration models using

objective model selection criteria, and we investigate

the implications of selecting a particular model.

The nocturnal flux measured above the canopy by

eddy covariance is generally assumed to represent Reco,

and thus includes soil respiration (both heterotrophic

respiration and root respiration) as well as various

sources of above ground respiration (e.g., leaf, branch

and stem respiration) (Davidson et al., 2006b). Reco and

its components have been modeled using a variety of

approaches (e.g., Lloyd and Taylor, 1994; see also

Morgenstern et al., 2004). In simple respiration models,

the respiratory flux generally scales as a function of

temperature (although the functional form of this

relationship varies among models), representing the

dominant role of reaction kinetics, possibly modulated

by secondary environmental factors, such as soil water

content. Most of these models lack a strict theoretical

basis (cf. the Farquhar et al., 1980, photosynthesis

model). This can be attributed to the fact that we still

have a very poor mechanistic understanding of the

relationships between environmental factors and Reco,

and between carbon allocation and substrate availability

for respiration (Davidson et al., 2006a). A complicating

factor is that soil and ecosystem respiration represent

the aggregate respiratory flux from a diverse (and

changing) array of organisms, each of which may be

subject to somewhat different environmental conditions

or limiting factors.

Previous studies have compared a number of

respiration models using data from individual sites

(Janssens et al., 2003; Del Grosso et al., 2005;

Richardson and Hollinger, 2005) or even multiple sites

(Falge et al., 2001), but to date no single synthesis has

compared a wide range of simple models across

different ecosystem types and measurement techniques,

as we do here. Our objective is to determine which

models give the best fit, and to assess the effects (in

terms of model predictions) of choosing a particular

model. Our emphasis is on model selection rather than

hypothesis testing. Cross-validation and an information

theoretic criterion are used for objective model
selection, and models are ranked accordingly. We use

the modeled annual sum of respiration (‘‘annual SR’’)

as a quantitative, but subjective, means by which to

evaluate differences in model predictions (e.g., Hagen

et al., 2006), since annual sums of fluxes are of

particular interest to the community. We investigate

whether rankings for models that simulate Reco are

consistent across three different ecosystems: coniferous

forest, deciduous forest, and grassland, using nocturnal

data from the Howland, Harvard Forest, and Lethbridge

AmeriFlux sites. In addition to data from the main eddy

covariance tower at Howland (‘‘Howland-Main’’), we

also use data from a below-canopy eddy covariance

system (‘‘Howland-Subcanopy’’) and an array of

automated soil respiration chambers (‘‘Howland-Auto-

chamber’’) at this site to investigate whether model

rankings for Rsoil are similar to those for Reco.

2. Models, data and methods

2.1. Respiration models

The models we evaluate were selected from the

literature and are listed in Table 1 (note that although the

parameters are denoted u1, u2, . . ., un for each model, the

optimal parameter values differ among models). These

models are all simple, in that they contain (at most) a

single static carbon pool, have no feedbacks, and are

driven by bulk measurements of the overall ecosystem

state. For example, soil temperature is typically used as

a driving variable, although it may not accurately reflect

the thermal state of various respiring components within

the system (e.g., canopy temperature versus litter

temperature versus O- and A-horizon temperature;

Hollinger et al., 1994; Van Dijk and Dolman, 2004;

Reichstein et al., 2005).

Respiration is controlled by both biological and

physical factors. Work by Arrhenius and van’t Hoff in

the late-19th century on the temperature dependence of

chemical reactions gave rise to notions of a relationship

between temperature and respiration (see review by

Lloyd and Taylor, 1994). Either a linear (model A in

Table 1) or higher-order polynomial (model B) model

would suffice as a simple, if naı̈ve, representation of this

relationship (at least over a limited range), but the

Arrhenius equation (model C) more accurately

describes many chemical systems. van’t Hoff’s Q10

model (model D), which gives an exponential relation-

ship between respiration and temperature, has been

widely used in many branches of biology. However, it

assumes fixed temperature sensitivity, and predicts that

respiration increases at a steady relative rate, and
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Table 1

Respiration models used in the present analysis

Model Formula Reference

[A] Linear u1 + u2T Wofsy et al. (1993)

[B] Polynomial u1 + u2T + u3T2 + u4T3 + u5T4 + u6T5

[C] Arrhenius u1 � exp
u2

283:15R

� �
1� 283:15

T

� �� �
Lloyd and Taylor (1994)

[D] Q10 u1 � u2
ðT�T ref Þ=10 Black et al. (1996)

[DS] Q10-S: Q10 with T = Tsoil

[DA] Q10-A: Q10 with T = Tair

[D1] Q10-vTemp: temperature-varying Q10 u1 � ðu2 þ u3TÞðT�T ref Þ=10

[D2] Q10-vTime: time-varying Q10 u1½u2 þ u3 sinðJDpÞ þ u4 cosðJDpÞ�ðT�T ref Þ=10

[D3] Q10-Gresp: SWC modulated u1 � u2
ðT�T ref Þ=10 � SWC

SWCþu3
� u4

SWCþu4
Carlyle and Ba Than (1988)

[E] Lloyd and Taylor u1 � exp
�u2

Tþ273:15�u3

� �
Lloyd and Taylor (1994)

[Er] L&T-Rest: restricted form of L&T u1 � exp �308:56
Tþ46:02

� �

[F] Logistic u1
1þexpðu2�u3TÞ

Barr et al. (2002)

[G] Fourier u1 þ u2 sinðJDpÞ þ u3 cosðJDpÞ þ ðhigher order termsÞ Hollinger et al. (2004)

[G1] Fourier-1: first-order Fourier regression

[G2] Fourier-2: second-order Fourier regression

[G4] Fourier-4: fourth-order Fourier regression

[H] Neural networks Hagen et al. (2006)

[H1] NN-S f(Tsoil)

[H2] NN-A f(Tair)

[H3] NN-SA f(Tsoil, Tair)

[H4] NN-SAJ f(Tsoil, Tair, JDp)

[H5] NN-SAJW f(Tsoil, Tair, JDp, SWC)

Note: Model parameters, u1, . . ., un, differ among models. ‘‘T’’ refers to a measured temperature variable, either Tair or Tsoil. Tref is a fixed reference

temperature, usually 10 8C. JDp is the Julian day expressed in radians (=2p � JD/366). SWC is soil water content, in % by volume. Codes in square

brackets are those used to identify plotted points in Figs. 1 and 2.
without limit, as temperature increases. This character-

istic is a common criticism of the Q10 model (e.g.,

Tjoelker et al., 2001). By comparison, both the Lloyd and

Taylor model (model E) and the logistic model (model F)

have a sigmoid shape, which may be more appropriate at

higher temperatures, when respiration may be sup-

pressed. Simulations (Richardson and Hollinger, 2005)

suggest that the Lloyd and Taylor model is over-

parameterized because different combinations of para-

meters can produce versions of the model that fit the data

equally well given inherent carbon flux measurement

uncertainties. To avoid this equifinality (e.g., Schulz

et al., 2001), we also use a one-parameter restricted

version of the model (model Er), with the other two

parameters constrained to the values reported by Lloyd

and Taylor (1994) for their soil respiration data set.

Similar to Kirschbaum (1995), we constructed two

variants of the traditional Q10 model. In our temperature-

varying Q10 model (Model D1, ‘‘Q10v-temp’’), the single

parameter controlling the temperature sensitivity of

respiration is instead specified as a linear function of

temperature itself. This allows the temperature sensitivity

to decrease with increasing temperature (Janssens and
Pilegaard, 2003), as in the Lloyd and Taylor model. In the

time-varying Q10 model (Model D2, ‘‘Q10v-time’’), the

temperature sensitivity of respiration is specified as a

first-order Fourier function of the Julian day, and is thus

constrained to follow a seasonal course. We are not aware

of models like these being applied previously to eddy

covariance data (Kirschbaum’s analysis was based on a

literature survey of laboratory incubations), but our own

preliminary results indicated potentially significant

improvements over the original Q10 model.

A third variant of the Q10 model is the Gresp model

(model D3), in which the temperature–respiration

relationship is modulated by soil water content. Soil

water content may more tightly control respiration in

some ecosystems than others. For example, soil

respiration at the coniferous Howland Forest has been

found to be less sensitive to soil moisture than that at the

deciduous Harvard Forest (Savage and Davidson, 2001).

We use soil temperature to drive the above

temperature–respiration relationships. This decision is

based on the fact that Rsoil accounts for a large

proportion of Reco in forested ecosystems (Davidson

et al., 2006b). For the Q10 model, however, we include
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both a version driven by soil temperature (model DS,

‘‘Q10-S’’) and by air temperature (model DA, ‘‘Q10-A’’).

The Fourier model (model G) is not based on a

presumed temperature–respiration relationship. Rather,

it is simply a representation of the inherent seasonality

of temperature and respiration. The Fourier model is

thus appealing because it does not require data for

environmental drivers (but for this same reason it may

not be very useful for making predictions into the

future). We evaluate first-, second-, and fourth-order

Fourier models (‘‘Fourier-1’’, etc.); higher-order mod-

els can capture more complex seasonal patterns than

lower-order models, but may be subject to over-fitting

and poor performance outside of the domain used for

parameterization.

Note that for some models, a number of different, but

equivalent, formulations are possible. For example, the

standard Q10 model formulation (model D) is function-

ally identical to both the Type I exponential, u1 exp(u2T),

and the Type II exponential, exp(u3 � u4T). The Lloyd

and Taylor model listed in Table 1 (model E) has an

alternate formulation expressed in terms of the respira-

tion rate at 10 8C (see Eq. (11) in Lloyd and Taylor, 1994).

The basic u1 sin(x) + u2 cos(x) structure of the Fourier

model (model G) can, of course, also be written as

u3 sin(x + u4). Results obtained using these alternative

expressions will not differ, except to the extent that

iterative numerical algorithms for non-linear optimiza-

tion may proceed towards convergence more or less

slowly for one formulation than another, depending on

initial parameter guesses and optimization algorithm.

In a different class of models from those just

described are the neural networks (models H) (Bishop,

1996). Neural network regression models have been

applied previously to eddy covariance data and are

described elsewhere (e.g., Van Wijk and Bouten, 1999;

Papale and Valentini, 2003; Hagen et al., 2006); they are

very flexible and are thus well-suited to non-linear

problems, especially when there is no need to impose a

particular functional form on the respiration response to

a particular independent variable. We used five different

neural network models: ‘‘NN-S’’ (soil temperature),

‘‘NN-A’’ (air temperature), ‘‘NN-SA’’ (soil temperature

and air temperature), ‘‘NN-SAJ’’ (NN-SA plus sine and

cosine of Julian day), and ‘‘NN-SAJW’’ (NN-SAJ plus

soil water content).

2.2. Data sources

2.2.1. Tower-based eddy covariance measurements

As our primary data source, we used nocturnal above-

canopy CO2 flux data from eddy covariance towers in
three contrasting ecosystems. The Howland tower

(1997–2004 data; 45.258N, 68.738W, elev. 60 m ASL)

is located in a boreal-northern hardwood transition forest

about 50 km north of Bangor, ME, USA. The Harvard

tower (1992–2003 data; 42.538N, 72.178W, elev. 340 m

ASL) is located in a mixed temperate forest, about

110 km west of Boston, MA, USA. The Lethbridge tower

(1999–2004 data; 49.438N, 112.568W, elev. 951 m ASL)

is located in a mixed grassland, just west of the city limits

of Lethbridge, Alberta, Canada.

Quality control, flux corrections, and data editing

were performed by the individual site investigators. For

consistency across all three tower sites, a standard

u* = 0.25 threshold was applied during nocturnal

(PPFD < 5 mmol m�2 s�1) periods; this threshold

value is consistent with cutoff values that have

previously been applied at these sites. Site-specific

procedures are described elsewhere (Howland: Hollin-

ger et al., 1999, 2004; Harvard: Barford et al., 2001;

Lethbridge: Flanagan et al., 2002; Flanagan and

Johnson, 2005). For all data sets, the sign convention

used is that carbon flux into the ecosystem is defined as

negative, i.e., respiration is a positive flux.

2.2.2. Below-canopy eddy covariance

measurements

A below-canopy eddy covariance system, mounted on

a 3 m tripod in close proximity to the Howland main

tower, was operated from 1996 to 2001. The understory

in the vicinity of the tripod is very sparse, and the canopy

light transmittancevery low, and thus the measured fluxes

are dominated by soil respiration (Hollinger et al., 1999).

We used both daytime and nighttime data in the present

analysis. We implemented a more relaxed u* threshold

for this system to ensure an adequate sample size for each

year. With u* = 0.10, there were 4–5 times as many

observations (mean � 1 S.D. = 2400 � 1000 observa-

observations/year) as with u* = 0.20. However, model

rankings were almost identical regardless of whether u*

was set to 0.10, 0.15, or 0.20. Modeled annual SR

differed somewhat depending on the u* threshold used,

but the effect was not consistent across years. We note

that in this analysis below-canopy data have not been

corrected for high and low frequency losses due to

measurement system inadequacies.

2.2.3. Automated soil respiration chamber

measurements

Six automated soil respiration chambers (see Savage

and Davidson, 2003, for details on design and

instrumentation) were installed at Howland Forest, in

close proximity to the below-canopy flux system, in
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mid-May 2004 (JD 135). The chambers were sampled

sequentially for 5 min each, so that each chamber was

sampled every 30 min. Data from chamber 5 are not

included in the present analysis, due to a broken piston

that occurred half way through the growing season (JD

236). Measurements of the remaining five chambers

continued until early November (JD 310).

Because the autochamber data cover only half the

year, and we have no wintertime data to constrain the

models, we do not present annual SR estimates for this

data set.

2.3. Maximum likelihood model fitting

For evaluating models and estimating parameters

based on data, a maximum likelihood approach should

be used. In the maximum likelihood paradigm, the

estimated model parameters are those that would be

most likely to generate the observed data, given the

model and what is known about the measurement

uncertainty (Press et al., 1993). The correct use of this

approach thus requires information about measurement

error in the data.

Ordinary least squares optimization yields maximum

likelihood parameter estimates when the assumptions of

normality and constant variance (homoscedasticity) of

the error are met. However, recent work indicates that

the eddy covariance flux measurement error, d, follows a

distribution that is better approximated by a double-

exponential (Laplace) distribution than a normal

(Gaussian) distribution; the variance of the measure-

ment error (s2(d)) also generally scales as a function of

the magnitude of the flux (Hollinger and Richardson,

2005; Richardson and Hollinger, 2005; Richardson

et al., 2006). According to Press et al. (1993), when

errors are distributed as a double-exponential with non-

constant variance, maximum likelihood parameter

estimates are obtained by minimizing the figure of

merit, V, equal to the weighted sum of the absolute

deviations between measured (yi) and modeled (ypred)

values, i.e., the cost function in Eq. (1),

V ¼
Xn

i¼1

jyi � ypredj
sðdiÞ

(1)

The weighting factor, 1/s(di), is the reciprocal of the

estimated standard deviation of the measurement error

for each observation i. As noted by Raupach et al.

(2005), this weighting reflects our confidence in the

data: observations with low s(di) receive more weight in

the optimization than observations with high s(di),

because we have more confidence in observations with
smaller measurement uncertainty. Previous research

(Richardson et al., 2006) indicates that s(di) scales with

the magnitude of the flux for FCO2
� 0 (i.e., respiratory

efflux from the system), as given in Eqs. (2a and 2b):

forested sites : sðdiÞ ¼ 0:62þ 0:63� FCO2
(2a)

grassland sites : sðdiÞ ¼ 0:38þ 0:30� FCO2
(2b)

Similar analyses for both the subcanopy EC data and the

autochamber data indicate that the measurement error

for these time series is also better approximated by a

double-exponential, rather than a normal, distribution.

Likewise, s(di) again scales with the magnitude of the

flux (Eqs. (2c and 2d)):

understory EC : sðdiÞ ¼ 0:06þ 1:51� FCO2
(2c)

autochambers : sðdiÞ ¼ 0:15þ 0:28� FCO2
(2d)

Note that the scaling of measurement uncertainty with

flux magnitude depends upon both site characteristics

and methodology. For the purposes of Eqs. (2a–2d), we

use an estimated flux, F̂CO2
, rather than the measured

flux FCO2
, to estimate the measurement uncertainty.

This yields an uncertainty estimate that is statistically

independent of the actual error in the measured flux: if

the measured flux was used for Eqs. (2a–2d), then

observations with negative measurement errors would

receive more weight (because estimated s(di) is lower),

and observations with positive measurement errors

would receive less weight, in the optimization scheme.

The estimated flux was determined by fitting a second-

order Fourier regression to the data using unweighted

absolute deviations optimization: preliminary analyses

indicated that this model captured the inherent season-

ality of respiration in these temperate systems relatively

well.

Most statistical analyses were conducted in SAS 9.1

(SAS Institute, Cary, NC, USA) using weighted non-

linear regression. Parameters were optimized through

minimization of V (Eq. (1)) using either the Gauss-

Newton or the Marquardt method with automatic

computation of analytical first- and second-order

derivatives. Results obtained using these algorithms

were found to be essentially the same as those determined

using a simulated annealing algorithm (Metropolis et al.,

1953). The neural network model was fit using the

Bayesian-regularized neural network algorithm of

MacKay (1994) coded in MatLab (The MathWorks,

Natick, MA). Separate model parameters were fit for

each year of data, except for Howland-Autochamber

data, where we fit a separate set of model parameters for

each chamber.
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2.4. Model evaluation

2.4.1. k-Fold cross-validation

Ideally, models should be validated against a wholly

independent data set. Often, this is impossible; in the

case of statistical modeling, it is rarely done. More

typically, models are inadequately ‘‘evaluated’’ by

comparing fitted model values, ypred, directly against the

original yi. An example of this type of within-sample

validation would be evaluating models on the basis of

the mean squared error of the model residual. An

alternative out-of-sample approach, cross-validation, is

preferable, because model predictions are not validated

against the same data that were used to establish model

parameters. We used a standard k-fold cross-validation

approach (Hastie et al., 2001), in which the data are

divided into k subsets, the model is fit using (k-1)

subsets as the training set, and then validation is

conducted using the one (kth) omitted subset. The

procedure is then repeated k times, with a new set of

model parameters fit at each step. In this way, every data

point is included in the validation set exactly once.

Models are then evaluated using the maximum

likelihood figure of merit, V (Eq. (1)), calculated

across the k validation sets.

As noted above, the sorts of models evaluated here are

often used to fill nighttime gaps in the flux data record. In

validating the model predictions, we wanted to test the

ability of each model to fill both small and large data

gaps. We performed two different cross-validations, each

with k = 12 (a value of 10 � k � 20 is typically used). In

the first, each data point was randomly assigned to one of

the subsets; we refer to this as the ‘‘Random-12’’ (Rand-

12) cross-validation. Consequently, this approach tests

the stability of a model with small gaps distributed

randomly throughout the year. In the second, the year was

divided into 12 ‘‘months’’ of equal length, and each

month was specified as one of the subsets (Month-12).

This approach assesses a model’s performance with large

gaps in the flux record, which may involve making

extensive predictions beyond the domain of the data used

for fitting.

Note that an assumption underlying k-fold cross-

validation is that the training and validation data sets are

independent and identically distributed. We acknowl-

edge that because of the time-series nature of flux data,

this assumption may not be entirely met. However, in

the case of the Month-12 validation, the number of

observations in each subset is probably much larger than

the effective ‘‘memory’’ of any autocorrelation, mean-

ing that for practical purposes the non-independence

can be ignored.
2.4.2. Information theoretic approach

Akaike (1973) developed a method to choose among

alternative models evaluated via the maximum like-

lihood approach. Akaike’s Information Criterion (AIC,

Eq. (3)) was designed for model selection when data are

normally distributed with constant variance (Burman

and Nolan, 1995; Anderson et al., 2000),

AIC ¼ n logðŝ2Þ þ 2ð pþ 1Þ (3)

where n is the number of observations, ŝ2 equals the

estimated within-sample residual sum of squares

divided by n, and p is the number of parameters in

the model. The model with the lowest AIC is considered

the best model, given the data at hand, but it is important

to note that AIC is not in any sense a formal or statistical

hypothesis test (Anderson et al., 2000). Since n is fixed

for any given data set, AIC essentially balances better

model explanatory power (smaller ŝ2) against increas-

ing complexity (larger p); in this way, AIC selects

against models with an excessive number of parameters.

A number of alternative criteria have been developed

(e.g., Hurvich and Tsai, 1990; Burman and Nolan,

1995) for cases when OLS assumptions are violated,

and models are fit by some form of robust regression. In

the present analysis, we use the following form

(Eq. (4)), which is appropriate when models are fit

using weighted absolute deviations optimization (after

Hurvich and Tsai, 1990):

AICWAD ¼ 2n logðVÞ þ 2ð pþ 1Þ (4)

where V is the within-sample figure of merit from

Eq. (1), and n, p are as in Eq. (3).

For a neural network model, p equals the number of

nonzero fitted weight parameters (Nweights), which

depends on the number of hidden nodes (Nhidden), the

number of input variables (Ninputs), and the number of

output variables (Noutputs), as in is Eq. (5):

Nweights ¼ Nhidden � ðN inputs þ 1Þ þ ðNoutputsÞ

� ðNhidden þ 1Þ (5)

2.5. Secondary statistical analyses

Optimization was based on minimizing the figure of

merit, V, given in Eq. (1), for each model. Then, for

each data set and each year of data, we calculated a

within-sample null model (R ¼ R̄, where R̄ is a constant

for all yi) value for the figure of merit, V0. This was used

to scale V and generate, for the purpose of comparing

across data sets, a relative figure of merit statistic, r0,
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that takes on a value between 0 and 1 (Eq. (6)):

r0 ¼ 1�V

V0
(6)

Because it is a measure of how much of the scatter in the

original data is explained by the model, this statistic

could be considered the absolute deviations analogue to

the multiple correlation coefficient, r2, commonly

employed in least-squares regression analyses of Gaus-

sian data.

Model fit statistics (the r0 statistic for Rand-12 and

Month-12 cross-validation, as well as AICWAD) and the

modeled annual sum of respiration (‘‘annual SR’’) were

analyzed separately for each site, using two-way analysis

of variance with ‘‘model’’ and ‘‘year’’ as categorical

variables. Visual inspection of ANOVA residuals

suggested that the assumptions of normally distributed

residuals and homogeneity of residual variance were

relatively well met, except for annual SR. We therefore

conducted a non-parametric ANOVA on rank-trans-

formed annual SR data; for comparative purposes, both

analyses are reported in Table 4. Differences among

models were assessed using a Bonferroni multiple

comparison test to control the overall Type I error rate

(a = 0.05). This approach is often considered excessively

conservative, as it increases the probability of a Type II

error (failure to reject the null hypothesis). However, it

should be kept in mind that our objective is to identify

broad groups of models that perform more or less

similarly for a given data set (i.e., ‘‘models ‘A’, ‘B’, and

‘C’ are roughly comparable’’), rather than explicit

hypothesis testing (i.e., ‘‘at 95% confidence, model ‘A’

is significantly better than model ‘B’’’).

Overall model rankings for each fit criterion were

compared, both for individual sites (‘‘how similar are

the model rankings by AICWAD and Rand-12 r0 at

Tower A?’’) and across multiple sites (‘‘how similar are

rankings by AICWAD at Towers A, B, and C?’’), using

Kendall’s W coefficient of concordance (Sokal and

Rohlf, 1995).

3. Results

3.1. Overall patterns across sites

Regardless of the model used, it is possible to explain

more of the variation in measured nocturnal FCO2
for

some data sets than others (Table 2). Across models,

Rand-12 r0 values range from 0.17 to 0.23 at Harvard,

compared to 0.25–0.38 at Howland-Main, and 0.15–

0.51 at Lethbridge. Thus, the model with the lowest r0 at

Howland-Main explains more variation than the model
with the highest r0 at Harvard. At Lethbridge, the

difference between the best-fitting models and the

worst-fitting models is larger than at either of the other

two tower sites. Similarly, the models explain far more

of the variation in the Howland-Autochamber data

(r0 range 0.23–0.54) than the Howland-Subcanopy data

(0.15–0.21). The unexplained variation in measured

nocturnal FCO2
can be attributed to both the measure-

ment system (e.g., random measurement uncertainty

plus, in the case of the eddy covariance data, temporal

variation in the flux footprint, and systematic but

unknown biases associated with nocturnal measure-

ments, possibly related to advection and storage; see

Aubinet et al., 2001; Richardson et al., 2006; Oren et al.,

2006) as well as the shortcomings of the models

themselves (e.g., oversimplification/incorrect represen-

tation of processes, including omission of important

covariates), which may not be adequate to describe the

complex ensemble of processes that together combine

to yield Reco. We discuss variation in the explanatory

power of the models later.

3.2. Model evaluation

The relative figure of merit, r0, is always lower for

Rand-12 cross-validation than the within-sample fits

(i.e., not cross-validated) (results not shown), as would be

expected. On average, this difference is on the order of

1%, but for the neural network models the difference is

commonly on the order of 3–5%. This loss of generality

may be indicative of some degree of over-fitting.

Similarly, the relative figure of merit, r0, is always

higher for the Rand-12 than Month-12 cross-validations

(Table 2). For Lethbridge, the difference between Rand-

12 r0 and Month-12 r0 is especially pronounced, whereas

for Harvard, this difference is negligible for most models.

Although the fourth-order Fourier model ranks well by

Rand-12 r0 for most data sets, it consistently ranks poorly

by Month-12 r0, and thus this model appears particularly

unsuitable for large gaps.

Based on analysis of concordance statistics (Table 3),

there is strong (and statistically significant) agreement

between the three methods of ranking models for each

tower site. However, for each of the tower data sets, the

Rand-12 and AICWAD rankings are in much better

agreement than either of these with the Month-12

rankings. Across sites there is reasonable (and

statistically significant) agreement in whole-ecosystem

respiration model rankings based on either the Rand-12

or AICWAD criteria but not the Month-12 criteria. The

overall similarity of model rankings observed across

the flux sites is also observed within a forest—i.e.,
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Table 2

Respiration model rankings based on three different criteria

Rand-12 and Month-12 denote two cross-validation schemes; AICWAD is a version of Akaike’s Information Criterion appropriate for weighted

absolute deviations optimization. Models are described in Table 1. Continuous soil moisture data not available for Harvard, and so Q10-Gresp and

NN-SAJW models not used. Data were analyzed by analysis of variance (ANOVA), with ‘‘Model’’ and ‘‘Year’’ as main effects. Vertical lines denote

models that are not significantly different (95% confidence), based on multiple comparison test. Lethbridge, Harvard, and Howland-Main data reflect

whole-ecosystem respiration, whereas Howland-Subcanopy and Howland-Autochamber reflect soil respiration.
among Howland-Main, Howland-Subcanopy, and

Howland-Autochamber—when models are ranked by

AICWAD (Fig. 1).

Several important and consistent patterns emerge

from Table 2. Perhaps most notable (given the
widespread use of these particular models) is that the

basic Q10 model (whether driven by air or soil

temperature), and the restricted form of the Lloyd and

Taylor model, tends to appear near the bottom of the

rankings for all data sets. The three-parameter Lloyd and
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Table 3

Concordance of model rankings across sites and methods, based on

Kendall’s W coefficient

Comparison W

Within individual sites

Howland, all three rankings 0.95**

Harvard, all three rankings 0.89**

Lethbridge, all three rankings 0.79**

Howland, AICWAD vs. Rand-12 0.99**

Howland, AICWAD vs. Month-12 0.95**

Howland, Rand-12 vs. Month-12 0.95**

Harvard, AICWAD vs. Rand-12 0.98**

Harvard, AICWAD vs. Month-12 0.88**

Harvard, Rand-12 vs. Month-12 0.88**

Lethbridge, AICWAD vs. Rand-12 0.99**

Lethbridge, AICWAD vs. Month-12 0.77*

Lethbridge, Rand-12 vs. Month-12 0.76*

Across all sites

Ranking by AICWAD 0.67**

Ranking by Rand-12 0.68**

Ranking by Month-12 0.32 NS

Significance level of coefficient: **P � 0.001; *P � 0.01; NS: not

significant.
Taylor, logistic, and Q10-vTemp models all have a

sigmoid temperature response, and are ranked in the

middle of the pack for all data sets and evaluation metrics.

The modified Q10 models show varying degrees of

improvement over the basic Q10 model. For example,

inclusion of a soil moisture term (the Q10-Gresp model)

results in greatly improved performance for Lethbridge,

but little or no improvement for Howland-Main. Results

from the Q10-vTemp and Q10-vTime models support the

idea that the temperature sensitivity of respiration is not

fixed, but rather decreases with increasing temperature

and is lower in summer than winter. By accounting for

variable temperature sensitivity, these models tend not

to exhibit the seasonal biases in model predictions that

frequently characterize the basic Q10 model.

There are also clear benefits to using models that go

beyond the basic temperature–respiration relationship:
Fig. 1. Concordance of model rankings (based on AICWAD) fit to three data se

Howland-Autochamber. W is Kendall’s coefficient of concordance. Models
incorporating additional data, such as soil water content

or Julian date, results in a superior model. For example,

the more highly parameterized neural network models

(NN-SAJ and NN-SAJW) consistently rank at the top of

the Rand-12 rankings (and, with the exception of

Howland-Subcanopy, the AICWAD rankings), although

somewhat lower in the Month-12 rankings. The neural

network models are particularly useful for multiple

environmental drivers because no functional form need

be specified.

3.3. Model predictions

3.3.1. Annual sums of respiration

The modeled annual sum of respiration (‘‘annual

SR’’) depends on the particular model used, but

differences among models are not very consistent across

sites (Table 4; note that annual sums are not calculated for

the Howland-Autochamber measurements because this

system was only operated during the growing season).

For example, the Q10-A model (which we have already

seen is a poor choice, e.g., Table 2), predicts the highest

mean annual SR for Harvard and Howland-Main, but

very low mean annual respiration sums for Lethbridge

and the Howland-Subcanopy. The fourth-order Fourier

model predicts the highest mean annual SR for all data

sets with the exception of Harvard, for which it gives

among the lowest mean annual SR. However, for all data

sets, the sigmoidal models (Lloyd and Taylor, logistic,

and Q10-vTemp) are ranked near the median while the

more highly parameterized neural networks (e.g., NN-

SAJ and NN-SAJW models) give consistently higher

predictions for mean annual SR.

There is relatively little difference among models for

Harvard (range [maximum–minimum] of mean pre-

dicted annual SR = 75 g C m�2 y�1), whereas for

Howland-Main (range = 355 g C m�2 y�1) the effect

of choosing among different models is more pro-

nounced (Table 4). At Lethbridge, the absolute range
ts from the Howland Forest: Howland-Main, Howland-Subcanopy, and

are identified by codes given in Table 1.
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Table 4

Modeled annual sum of respiration (g C m�2 y�1, mean across all years for a given site) for four eddy covariance data sets and 19 different

respiration models (model details are contained in Table 1)

Continuous soil moisture data not available for Harvard, and so Q10-Gresp and NN-SAJW models not used. Data were analyzed by analysis of

variance (ANOVA), with ‘‘Model’’ and ‘‘Year’’ as main effects. Vertical lines denote models that are not significantly different (95% confidence),

based on multiple comparison test. ‘‘Annual sum’’ results differ from ‘‘Ranked sum’’ because for ‘‘Ranked sum’’ the ANOVA was conducted on

rank-transformed data (untransformed data appeared not to meet assumptions of normally distributed residuals and homogeneity of variance). For

comparative purposes, both analyses are presented here, but note that Kendall’s coefficient of concordance indicates very good agreement

(W � 0.97, P � 0.001) between the two approaches for all four data sets.
(129 g C m�2 y�1) is moderate, but the relative magni-

tude of this range (�40% of the mean annual SR) is

very large (cf. �10% at Harvard).

3.3.2. Correlations between goodness-of-fit and

annual sums

For each of the four eddy covariance data sets, there

is a significant ( p � 0.01) positive correlation between

mean (across all years) within-sample relative figure of

merit, r0, and mean annual SR for each data set (Fig. 2).

Thus, the models that fit better (based on within-sample

r0) at a given site tend to predict larger annual sums of
respiration, compared to models that fit less well. For

the Lethbridge (r = 0.96) and Howland-Subcanopy

(r = 0.84) data sets, this relationship is especially

strong. For Howland-Main, the correlation is r = 0.65,

but the Q10-A model (model DA in Fig. 1C) is an

obvious exception to the general pattern: excepting

Q10-A, the correlation rises to r = 0.80.

3.4. What is the appropriate temperature?

Most of the models tested here are based on a

relationship between temperature and ecosystem
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Fig. 2. For each eddy covariance data set, there is a positive correlation between model goodness-of-fit (mean relative figure of merit, r0; see Eq. (6))

and the modeled annual sum of respiration (mean annual SR, g C m�2 y�1). Models are identified by codes given in Table 1.
respiration (Table 1). It is not clear what the appropriate

temperature metric is; respiration has both above and

belowground components, and to date there is no

consensus on the best measure to use as a ‘‘bulk’’

ecosystem temperature (Van Dijk and Dolman, 2004;

Reichstein et al., 2005). For example, results presented

in Table 2 demonstrate that a Q10 model based on soil

temperature fits better than one based on air temperature

for four of the five data sets used here (only at Harvard is

this not true; see also Van Dijk and Dolman, 2004).

Furthermore, the neural network analysis shows that

more of the variation in ecosystem respiration at all sites

can be accounted for when both air and soil temperature

(NN-SA) are used together than when either is used

alone (i.e., NN-S or NN-A). We note, however, that

because soil temperature varies with soil depth (deeper

horizons exhibit more muted diurnal and seasonal

patterns), model fit and model predictions may vary

depending on the depth at which the temperature is

measured. We used soil temperature profiles at How-

land-Main (2003–2004 only), Howland-Autochamber,

and Lethbridge to investigate these relationships.
At Howland-Main, for both 2003 and 2004, the

within-sample r0 steadily decreases (i.e., model fit

becomes worse) with increasing temperature depth; the

difference between r0 for Tsoil at 2 cm and Tsoil at 40 cm

was �15% for the Q10-S model. Similarly, for

Howland-Autochamber, the average (across all cham-

bers) within-sample r0 decreases by over 40% between

Tsoil at 2 cm and Tsoil at 40 cm for the Q10-S model.

However, in contrast to these results, for Lethbridge,

there is a slight (4%), but consistent, increase in within-

sample r0 as Tsoil measurement depth is increased from

2 cm to 16 cm.

Just as model fit varies depending on the depth at

which soil temperature was measured, there are also

associated effects on annual SR. For example, at both

Howland-Main (where model fit becomes progres-

sively worse as a deeper soil temperature is used) and

Lethbridge (where model fit becomes progressively

better as a deeper soil temperature is used) modeled

annual SR decreases monotonically with Tsoil mea-

surement depth. At Howland-Main, the difference in

modeled annual SR between Tsoil at 2 cm and Tsoil at
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40 cm is �14%. At Lethbridge, the overall pattern is

the same, but in some years (1999, 2000) the

difference in modeled annual SR between Tsoil at

2 cm and Tsoil at 16 cm is larger (�40%) than other

years (2003, 2004; difference �5%). Note that 1999

and 2000 were dry years with low absolute fluxes,

whereas 2003 and 2004 had higher soil moisture and

higher absolute fluxes.

4. Discussion

Morgenstern et al. (2004) reported that 29 eddy

covariance studies published between 1993 and 2001 all

used different methods to model nocturnal CO2 efflux

(i.e., respiration), but they suggested that eddy

covariance data were too noisy to permit definitive

statements about the suitability of different modeling

approaches (see also Falge et al., 2001). We have shown

here that when objective model selection criteria are

applied, and results compared across a range of

ecosystem types and data sources, some consistent

patterns emerge. Two of the most widely used models of

ecosystem and soil respiration, the basic Q10 model and

the ‘‘restricted’’ form of the Lloyd and Taylor model

(Eq. (11) in Lloyd and Taylor, 1994) do a poor job of

accounting for observed variation in ecosystem and soil

respiration in comparison with other simple models

(Table 2). The drawbacks of the basic Q10 model have

been enumerated previously (Lloyd and Taylor, 1994;

Janssens and Pilegaard, 2003; Davidson et al., 2006a).

The ‘‘restricted’’ Lloyd and Taylor model has one free

parameter, a scaling coefficient reflecting the base

respiration rate (u1 in Table 1, model Er). The two

parameters in the exponential were fit (u2 = 308.56,

u3 = 46.02; these control the temperature response) by

Lloyd and Taylor (1994) using a soil respiration data

set. We found that freeing the parameters u2 and u3

substantially improve the fit to the respiration data, a

result previously reported by Falge et al. (2001).

However, with all parameters free to vary, the model is

poorly constrained and parameter estimates are highly

correlated with one another. In a previous study

(Richardson and Hollinger, 2005), we found that any

one of the three parameters may be fixed with little ill

effect, yielding a well-constrained two-parameter

equation (see also Reichstein et al., 2005).

The analysis here supports the contention that the

temperature sensitivity of respiration declines at higher

temperatures (Lloyd and Taylor, 1994; Kirschbaum,

1995; Tjoelker et al., 2001) and thus a sigmoidal, rather

than purely exponential (i.e., basic Q10 model) equation

is recommended. The Q10-vTemp, Lloyd and Taylor,
and logistic models are all essentially comparable three-

parameter formulations of a sigmoidal function and

provide better fits to (and predictions of) both whole-

ecosystem and soil respiration, compared to the Q10

model.

Previous studies have noted that the short-term

temperature sensitivity of respiration tends to be less

than the long-term sensitivity (at least in summer-active

ecosystems, Reichstein et al., 2005), because the long-

term sensitivity is confounded with seasonal patterns of

phenology and environmental conditions (Drewitt et al.,

2002; Janssens and Pilegaard, 2003; Curiel Yuste et al.,

2004). Some of these authors have suggested that a

solution to this problem is to fit the basic Q10 model on a

shorter time step (e.g., days or weeks to months; see also

Falge et al., 2001). One advantage of the Q10-vTime

model (in which the temperature sensitivity was

constrained to vary seasonally) compared to this

approach is that relatively few parameters need to be

fit: four in total, versus 2t, where t is the number of

separate model fits during the year (at a minimum, t = 4

for a model fit separately to each season). Furthermore,

the Q10-vTime model is not subject to problems such as

those reported by Janssens and Pilegaard (2003), who

found that fitting the basic Q10 model to shorter (4–7

days) time periods could produce erroneous parameter

estimates if the temperature range during a given period

was too small. An additional problem with fitting Q10 at

a short time step is that spurious (i.e., offsetting)

seasonal variation in the base rate and temperature

sensitivity parameters may result as an artifact simply

because of the multiplicative nature of the model

structure and the resulting inherent correlation of

parameter estimates. This is why we did not consider a

model where both parameters could be simultaneously

time varying. However, an alternative approach to the

one we followed here would be to allow the base rate to

be time varying but have the temperature sensitivity

fixed over the course of the year.

Our Q10-vTime model ranks near the top (in terms of

AICWAD) for all data sets. With this approach, seasonal

biases (e.g., at Howland-Main: under-estimation of Reco

in spring and fall and over-estimation of Reco during

summer) associated with the standard Q10 model are

more or less eliminated. The temperature sensitivity is

highest in the winter, and lowest in the summer, as

would be expected (Janssens and Pilegaard, 2003; but

cf. Van Dijk and Dolman, 2004, who concluded that it

was the base rate of respiration, rather than the

temperature sensitivity, that varied seasonally). While

this is in principle similar to results from the Q10-vTemp

model (i.e., temperature sensitivity decreases with
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Fig. 3. Seasonal hysteresis in the relationship between soil tempera-

ture and the temperature sensitivity of respiration, Q10, as estimated

from a model where the temperature sensitivity is time-varying. The

temperature sensitivity is larger in winter than in summer, and

generally declines with increasing soil temperature. However, at a

given soil temperature, the temperature sensitivity is greater in the

autumn than the spring. Results are shown for two typical years from

the Howland-Main data set.

Fig. 4. Leverage of different temperature classes on the modeled

annual sum of respiration (annual SR), and the figure of merit (cost

function) used for model fitting. Soil temperatures of 0 8C exert a large

influence on model fit, but make only a small contribution to the

annual SR. By comparison, warmer soil temperatures exert less of an

influence on model fit, but make a far greater contribution to the

annual respiratory flux, since respiration is an increasing function of

temperature.
increasing soil temperature), it is interesting to note that

the temperature sensitivity in the Q10-vTime model

exhibits seasonal hysteresis in its relationship with soil

temperature (Fig. 3), which suggests that the linear

relationship between temperature sensitivity and soil

temperature that is implicit in the Q10-vTemp model

may be an over-simplification (note that by AICWAD,

Q10-vTime is always ranked ahead of Q10-vTemp; see

Table 2). The hysteresis may be a manifestation of

differences between Rsoil and Reco in the seasonal

patterns of temperature sensitivity (Davidson et al.,

2006a). For example, based on results from Howland-

Main and Howland-Subcanopy, it appears that the

amplitude of seasonal variation in the temperature

sensitivity is larger for Reco than Rsoil, and the point of

minimum temperature sensitivity is reached about 1

month later for Reco than Rsoil.

Morgenstern et al. (2004) noted that the choice of a

particular respiration model could be a source of bias in

annual sums of NEE and its components, since different

gap filling approaches would yield different results. Our

results go one step beyond this: the correlation between

model goodness-of-fit and annual SR (Fig. 2) suggests

that selecting a poorly fitting model may result in a

systematic under-estimation of the ‘‘true’’ annual

respiratory flux (although we acknowledge that the

‘‘true’’ flux can never be known). We believe that this

relationship arises from the fact that in temperate

ecosystems that experience cold winters there is a
mismatch between the leveraging of different soil

temperatures on the optimized figure of merit (i.e., V)

and on annual SR. For example, to use Howland-Main

as an example (Fig. 4), for roughly half the year (51% of

all observations), Tsoil is below 5 8C. These cold-soil

periods account for about 55% of the total V. However,

because of the strong temperature–respiration relation-

ship, cold-soil periods account for just 15% of the

modeled annual SR. On the other hand, Tsoil is above

15 8C for only 18% of the year. These warm-soil periods

account for only 14% of the total V, but 40% of the

modeled annual SR. All models tend to fit more or less

equally well during cold-soil periods, when the flux is

low, but poor models (which are not flexible enough to

simultaneously fit well across the entire temperature

range) tend to under-estimate the flux under warm-soil

periods. The model fit is, therefore, highly leveraged by

cold-soil periods (which have minimal influence on

annual SR), whereas annual SR is highly leveraged by

warm-soil periods (which have minimal influence on

model fit).

A consequence of the systematic bias in Reco that

may be imparted from selecting a poorly fitting model is

that biased estimates of Reco will affect the partitioning

of NEE. Since gross ecosystem exchange (GEE) may be

estimated from Reco (i.e., GEE = NEE � Reco, where

daytime Reco is a modeled result), the choice of model

for Reco can have significant additional consequences

(for an evaluation of NEE partitioning approaches, see

Reichstein et al., 2005; Stoy et al., 2006). For example,

lack of consistency in the Reco model could lead to

erroneous conclusions about site-to-site differences in

GEE (Falge et al., 2001).
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The differences between Rand-12 and Month-12 r0

rankings illustrates that long gaps are more difficult to

fill than short gaps, a result which is well-known. This

can be attributed to non-stationarity of the underlying

physiology (factors controlling respiratory processes

may be changing over time, e.g., acclimation, phenol-

ogy of root growth, addition of new litter inputs, spring

melting of snow cover; see Tjoelker et al., 2001;

Janssens and Pilegaard, 2003; Davidson et al., 2006b),

coupled with the fact that un-modeled (or poorly

constrained) and longer-term processes probably also

influence R. These problems are especially acute when

long gaps are located in a portion of the multi-

dimensional ‘‘environment space’’ that extends beyond

the domain used for parameterization. High-order

polynomial and Fourier models, as well as neural

networks, may be more subject to over-fitting, and thus

prone to poor behavior when extrapolated in this

manner.

Seasonal patterns in ecosystem respiration result

from temporal changes in both physical factors (e.g., the

temperature of different respiring components) and

biological factors (e.g., the base activity of different

respiring components), as well as interactions between

these two factors. Our analysis indicates that model fit,

and also model predictions, vary somewhat depending

on the temperature used as a driver for respiration. For

example, the neural network model driven by both air

and soil temperature consistently performs better than a

model driven by just one of these temperatures. On the

other hand, our results indicate that use of a deeper soil

temperature improved model fit at a grassland site

(Lethbridge), although the reverse was true at a forested

site (Howland). These results contribute to the ongoing

debate about the best measure of bulk ecosystem

temperature.

5. Conclusion

Selecting from among a range of candidate models

requires the application of objective model selection

criteria. We used cross-validation methods and a

version of Akaike’s Information Criterion to evaluate

different models for both soil and whole-ecosystem

respiratory fluxes of CO2. We found that the basic Q10

model is a particularly poor choice, despite its

widespread use in the literature, as it was consistently

ranked poorly by all selection criteria and for the five

different data sets we used. The restricted, one-

parameter Lloyd and Taylor model should similarly

be avoided. Neural network models are comparatively

little-used, but consistently ranked the highest,
especially when additional covariates (besides soil

temperature) were included (e.g., NN-SAJW). Neural

networks may be the best tool for filling short gaps,

but a potential problem is the possibility of over-

parameterization, which may result in poor predic-

tions for large gaps. A revised version of the Q10

model, in which the temperature sensitivity of

respiration was allowed to vary over time, was a

clear improvement over the standard Q10 model. This

improved performance (consistently ranked well by

AICWAD) came at the expense of only a few extra

fitted parameters. Compared to the neural networks,

this approach has the advantage that the model

parameters can still be interpreted to obtain

insight into ecosystem processes; the ‘‘black box’’

nature of neural networks makes such interpretation

impossible.

Selecting a good model is especially important

because of the observed correlation between model

goodness-of-fit and model predictions at the annual

time step. Because the sorts of models we investigated

here are widely used to fill flux data records, to partition

NEE to Reco and GEE, and as components of ecosystem

models (such as PnET and Biome-BGC), we suggest

that carbon-cycle scientists and other ecosystem

ecologists need to pay more careful attention to issues

of model selection.
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